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Abstract

Medial temporal lobe (MTL) substructures are the earliest regions affected by neurofibrillary 

tangle pathology—and thus are promising biomarkers for Alzheimer’s disease (AD). However, 

automatic segmentation of the MTL using only T1-weighted (T1w) magnetic resonance imaging 

(MRI) is challenging due to the large anatomical variability of the MTL cortex and the confound 

of the dura mater, which is commonly segmented as gray matter by state-of-the-art algorithms 

because they have similar intensity in T1w MRI. To address these challenges, we developed a 

novel atlas set, consisting of 15 cognitively normal older adults and 14 patients with mild 

cognitive impairment with a label explicitly assigned to the dura, that can be used by the multiatlas 

automated pipeline (Automatic Segmentation of Hippocampal Subfields [ASHS-T1]) for the 
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segmentation of MTL subregions, including anterior/posterior hippocampus, entorhinal cortex 

(ERC), Brodmann areas (BA) 35 and 36, and parahippocampal cortex on T1w MRI. Cross-

validation experiments indicated good segmentation accuracy of ASHS-T1 and that the dura can 

be reliably separated from the cortex (6.5% mislabeled as gray matter). Conversely, FreeSurfer 

segmented majority of the dura mater (62.4%) as gray matter and the degree of dura mislabeling 

decreased with increasing disease severity. To evaluate its clinical utility, we applied the pipeline 

to T1w images of 663 ADNI subjects and significant volume/thickness loss is observed in BA35, 

ERC, and posterior hippocampus in early prodromal AD and all subregions at later stages. As 

such, the publicly available new atlas and ASHS-T1 could have important utility in the early 

diagnosis and monitoring of AD and enhancing brain-behavior studies of these regions.
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1 | INTRODUCTION

The medial temporal lobe (MTL) is the site of several neurodegenerative pathologies, most 

notably of neurofibrillary tangle (NFT) pathology, a hallmark of Alzheimer’s disease (AD), 

which is thought to first affect the transentorhinal cortex, before it spreads to the entorhinal 

cortex (ERC) and cornu ammonis region 1 of the hippocampus (Braak & Braak, 1995, 1991; 

Ding, Van Hoesen, Cassell, & Poremba, 2009). As NFT pathology is closely related to 

neuron and synapse loss (Bobinski et al., 1997; Braak & Braak, 1991; Fukutani et al., 1995), 

certain MTL subregions may therefore show early and selective atrophy and serve as 

imaging biomarker in the early stages of AD. In fact, a recent in vivo magnetic resonance 

imaging (MRI) study showed selective atrophy in Brodmann area 35 (BA35), a region that 

approximates the transentorhinal region, in individuals with preclinical AD compared to 

controls (Wolk et al., 2017). These subregions are also of interest because they are thought 

to subserve different cognitive functions, such as recollection and familiarity (Wolk & 

Dickerson, 2011; Yonelinas et al., 2007), and are part of two dissociable MTL networks, 

where the anterior hippocampus, ERC and perirhinal cortex (PRC) are part of the anterior 

MTL network and the posterior hippocampus and parahippocampal cortex (PHC) are part of 

the posterior MTL network (Ranganath & Ritchey, 2012). These networks are also thought 

to be affected in the early stages of AD (Das et al., 2014).

Fine-grained measurement of subregions of the MTL has therefore received increasing 

attention in the recent years, with many studies utilizing high-resolution T2-weighted (T2w) 

MRI images, often with ~0.4 × 0.4 mm2 in-plane resolution (Bender et al., 2018; Ekstrom et 

al., 2009; Mueller et al., 2007; Olsen et al., 2013; Preston et al., 2010; Yushkevich, Amaral, 

et al., 2015; Zeineh, Engel, Thompson, & Bookheimer, 2001). The advantage of these 

images is that they allow for improved visualization of MTL structures less visible on T1-

weighted (T1w) MRI scans. For example, the stratum radiatum lacunosum moleculare, an 

important boundary between certain subfields of the hippocampus, and dura mater, which is 
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part of the meninges, can be visualized with T2w scans (Figure 1). The advantage of the 

clear visualization of the dura with these T2w MRI images is that it allows for accurate 

segmentation of important adjacent MTL subregions in contrast to T1w MRI images in 

which the dura has similar intensity as gray matter (Xie et al., 2016).

In our prior work (Yushkevich, Pluta, et al., 2015), we have developed a multiatlas 

segmentation software/package, called Automatic Segmentation of Hippocampal Subfields 

(ASHS, https://www.nitrc. org/projects/ashs), that can reliably segment MTL subregions in 

T2w MRI (the pipeline that works with T2w MRI is referred to as ASHS-T2 in this article). 

Even though there are advantages of these T2w MRI images over T1w MRI images, there 

are large data sets of T1w MRI scans available and analyzing these data sets would allow for 

more power to test hypotheses of interest. Additionally, T1w images often have higher 

resolution in the through-plane direction which helps in better resolving the folding and 

branching of sulci, important for the segmentation of these MTL cortical regions.

Available methods for the parcellation of MTL subregions on T1w MRI include several 

manual approaches (Kivisaari, Probst, & Taylor, 2013; Malykhin, Bouchard, Camicioli, & 

Coupland, 2008). An advantage of these manual approaches is that they often take into 

account the anatomical variability of the MTL cortex, which has multiple distinct anatomical 

subtypes, defined by the folding and branching patterns of the collateral sulcus (CS), that 

greatly affects the location of the borders between MTL cortices (Ding & Van Hoesen, 

2010), for example, when the CS is deep, BA35 is located at the medial bank of the CS 

while when CS is shallow, BA35 also occupies the fundus and lateral bank. However, 

manual segmentation is infeasible for larger data sets like the AD neuroimaging initiative 

(ADNI), which includes thousands of MRI scans. Among the automated methods available 

for MTL subregion segmentation on T1w MRI, the specialized modules for MTL provided 

by FreeSurfer (Fischl, 2012) are of the most widely used in the literature in older 

populations (Delli Pizzi et al., 2016; Lehmann et al., 2010; Mah, Binns, & Steffens, 2015; 

Mishra et al., 2017; Pasquini et al., 2016). FreeSurfer includes a module for labeling 

hippocampal subfields and hippocampal lamina based on an ex vivo atlas (Iglesias et al., 

2015). However, we have previously argued that standard resolution T1w MRI scans do not 

provide sufficient resolution for the visualization of the inner structure of the hippocampus 

and the parcellation of the hippocampal subfields (de Flores et al., 2015; Wisse, Biessels & 

Geerlings, 2014). FreeSurfer also provides separate specialized modules for ERC (Fischl et 

al., 2009) and PRC segmentation (Augustinack et al., 2013) based on spatial probability 

maps derived from ex vivo imaging. However, since these probability maps are defined in 

the space of a single template, this approach does not directly account for different subtypes 

of the MTL cortex.

Another important issue for T1w MRI scans, as mentioned above, relates to the visualization 

of the dura mater. In the MTL, a large proportion of the ERC and parts of the PRC are 

located directly adjacent to the dura and often appear merged with parts of the dura in T1w 

MRI (red arrows in Figure 1). To the best of our knowledge, none of the automatic analysis 

pipelines for MTL cortices using T1w MRI alone have addressed this confound, and the 

dura is often segmented as part of the gray matter by the state-of-the-art image processing 

algorithms, including FreeSurfer (the third column in Figure 1). This likely leads to an error 
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in the quantification of ERC and PRC, which potentially confounds the findings of research 

studies. In healthy individuals for whom there is little or no cerebrospinal fluid (CSF) 

separating the dura from the cortex, parts of the dura may be mistakenly labeled as cortex, 

whereas in patient groups with severe gray matter atrophy, the presence of such CSF would 

lead automatic methods to correctly exclude dura from the cortex label. This would 

potentially lead to a systematic bias in the estimation of group differences. To correct for this 

error, some studies performed manual correction either based on empirical rules or using 

T2w MRI of the same subject (e.g., the Human Connectome Project; Glasser et al., 2013). 

However, manual correction is labor intensive and T2w MRI scans are not always available. 

This is therefore not a feasible solution for large data sets consisting of only T1w MRI 

scans.

We hypothesize that the MTL cortex can be reliably automatically separated from the dura 

mater only using the T1w MRI even though there is only limited contrast between them. 

There are important features in T1w MRI that could be informative of the boundary of the 

dura and the cortex, for example, (a) the thin layer of CSF between the dura and the cortex 

can be visualized in some subjects (green arrow in Figure 1–b1) and (b) there are portions of 

the dura near the brain stem and inferior to the sulcus that are not merged with the cortex 

(white arrows in Figure 1). These features make it possible to infer the boundary between 

the cortex and the dura, even if it is not completely visible. Indeed, we recently developed a 

new atlas set that can be used by an established multiatlas segmentation framework 

(Yushkevich, Pluta, et al., 2015) together with a superresolution (SR) technique (Manjón et 

al., 2010) that is able to reliably segment ERC and PRC in T1w MRI that explicitly accounts 

for the confound of the dura mater and for the existence of multiple MTL cortex anatomical 

variants (Xie et al., 2016). To account for dura confounds, the atlas set for this pipeline was 

created using pairs of T1w and T2w scans in the same subjects, with the T2w previously 

used as an atlas set in the T2w-based MTL subregion segmentation approach by 

Yushkevich,Pluta, et al. (2015). The T2w images in the atlas set include labels for the ERC 

and subdivisions of the PRC, that is, BA35 and BA36, generated based on a segmentation 

protocol that takes anatomical variability of the CS into account and was developed in 

consultation with the neuroanatomist SLD, who has specific expertise in anatomical 

variability of the CS (Ding & Van Hoesen, 2010). The segmentations of this atlas set were 

transformed into the T1 space after coregistration with the T2w MRI of the same subject and 

manually edited to account for any residual misregistration errors. Additionally, the T1w 

atlas set segmentations were extended with a dura label informed by the aligned T2w MRI 

of the same subject, which helps in accurately locating the boundary between dura and the 

MTL cortex. Evaluation of this pipeline indicated that a large portion of the dura was 

assigned the correct label in our pipeline but not in other methods [FreeSurfer (Fischl, 2012) 

and ANTs (Avants, Epstein, Grossman, & Gee, 2008)], which included a large portion of the 

dura in the gray matter label. Cross-validation experiments showed promising segmentation 

accuracy of the automatic segmentation relative to manual segmentation for the MTL 

cortical regions [Dice similarity coefficient (DSC; Dice, 1945) is close to that using the T2w 

MRI (the ASHS-T2 pipeline, range from 0.671 to 0.755), in which the boundary between 

the cortex and the dura can be visualized]. Moreover, the clinical utility of the pipeline was 

evaluated by examining the statistical power in discriminating controls from amnestic mild 
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cognitive impairment (aMCI) patients, and indicated that BA35, in absolute terms, had the 

greatest area under the curve among the MTL cortex subregions, which is consistent with the 

Braak staging in the MTL (Braak & Braak, 1995).

This article extends this recent work, which was published in conference proceedings, with a 

richer set of MTL subregion measurements and additional experiments. We have extended 

our label set to include the PHC and the hippocampus, including a subdivision of the 

anterior and posterior hippocampus. Also, we provided thickness values in addition to 

volumes for the MTL cortices because thickness measures are less sensitive to border 

placement which may make them less sensitive to likely one aspect of errors in 

segmentation. We have improved the registration between the T1w and T2w MRI scans 

allowing for a closer alignment which required less editing of the transformed segmentations 

in the T1w-space. We performed crossvalidation experiments to assess the accuracy of the 

automatic segmentation relative to manual one, and compared our pipeline with FreeSurfer 

version 6.0 (Fischl, 2012) to evaluate how the different methods label dura in T1w MRI. 

And we further evaluated the performance of our pipeline in scans from ADNI phases GO 

and 2 by comparing MTL subregional volumes and thickness in amyloid negative controls 

with individuals with preclinical AD, prodromal AD and AD dementia. In addition, the atlas 

and software developed in this article are made publicly available (https://sites.google.com/

view/ashs-dox/home). Finally, we have also provided an easy-to-use cloud-based service 

built into the ITK-SNAP image segmentation tool (Yushkevich et al., 2006) that allows users 

to execute our pipeline on a remote server with a few mouse clicks. The cloud based 

serviced is briefly summarized in Supplementary Material A. A Detailed tutorial of our 

cloud-based service is available at https://sites.google.com/view/ashs-dox/cloud-ashs/

overview.

2 | METHODS

2.1 | Participants

2.1.1 | Penn Memory Center atlas set—The atlas set used in this study consists of 15 

cognitively normal older controls (NC) and 14 aMCI patients. These participants were 

recruited from the Penn Memory Center/Alzheimer’s Disease Center (PMC/ADC) at the 

University of Pennsylvania. Diagnosis of aMCI was made following established criteria 

(Petersen, 2004; Petersen et al., 2009; Winblad et al., 2004). This study was approved by the 

Institutional Review Board of the University of Pennsylvania and informed consent was 

provided by all subjects. This is the same atlas set that was used by Yushkevich, Pluta, et al. 

(2015) and Xie et al. (2017) to develop the atlas set using both T1w MRI and high-

resolution T2w MRI. To avoid confusion, the atlas set developed in this study will be 

referred to as the PMC-T1 atlas and the one used in Yushkevich, Amaral, et al. (2015), 

Yushkevich, Pluta, et al. (2015), and Xie et al. (2017) will be referred to as the PMC-T2 
atlas. Demographic and the mini-mental state examination (MMSE) data for the aMCI and 

NC groups are shown in Table 1.

2.1.2 | Data set from the ADNI—Part of the data used in the preparation of this article 

was obtained from the ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 
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as a public–private partnership, led by Principal Investigator Michael W. Weiner. The 

primary goal of ADNI has been to test whether serial MRI, positron emission tomography 

(PET), other biological markers, and clinical and neuropsychological assessment can be 

combined to measure the progression of MCI and early AD. For up-to-date information, see 

www.adni-info.org.

Cognitively normal controls and amyloid-beta (Aβ) positive patients that have T1w MRI 

scans available from the ADNI GO and ADNI 2 were included in this study. The amyloid 

status of each participant is determined by thresholding a summary measure of Florbetapir 

standardized uptake value ratio (SUVR) derived from Florbetapir PET using a threshold of 

SUVR > = 1.11 (Landau et al., 2012). The summary Florbetapir SUVR measure came from 

publicly available processed data on the ADNI website, which was calculated by taking the 

mean SUVR of a set of regions typically associated with increased uptake in AD and using 

cerebellar gray matter as reference region [details described in Landau et al. (2012)]. In 

total, 667 participants were included and grouped into Aβ negative (Aβ−) controls, 

preclinical AD (Aβ positive controls), early prodromal AD (Aβ positive early MCI), late 

prodromal AD (Aβ positive late MCI) and dementia patients (Aβ positive AD). Four 

subjects’ T1w MRI scans suffered from severe motion and thus were excluded from in this 

study. Table 2 summarizes the characteristics of the remaining 663 subjects.

2.2 | Neuroimaging data acquisition

2.2.1 | Imaging protocol of the PMC atlas set—The MRI scans of the atlas set were 

acquired on a 3T Siemens Trio MRI scanner (Erlangen, Germany) at the University of 

Pennsylvania using an eight-channel array coil. The imaging protocols include: (a) a whole 

brain T1w (magnetization prepared rapid acquisition gradient echo) MRI scan and (b) a T2w 

(turbo spin echo,) MRI scan with partial brain coverage and oblique coronal slice positioned 

orthogonally to the main axis of the hippocampus (De Vita et al., 2003; Thomas et al., 

2004). The parameters of the T2w MRI are: TR/TE = 5310/68 ms, 18.3 ms echo spacing, 15 

echo train length, 150°flip angle, 0% phase oversampling, 0.4 × 0.4 mm2 in-plane 

resolution, 2.0 mm slice thickness with 0.6 mm gap, 30 interleaved slices, and 7:12 min 

acquisition time. For the T1w MRI, they are: TR/TE/TI = 1600/3.87/950 ms, 15° flip angle, 

1.0 × 1.0 × 1.0 mm3 isotropic resolution, and 5:13 min acquisition time.

2.2.2 | ADNI imaging protocol—The MRI imaging protocols of the ADNI study that 

were used to acquire the T1w MRI scans were previously described in Jack et al. (2008) and 

Leow et al. (2006). For Florbetapir PET, images were acquired in a 20 min PET brain scan 

session (four frames of 5 min duration) after a 50-min uptake phase following injection of 

10 mCi of tracer.

2.3 | Manual segmentation of the MTL subregions in T1w MRI

The procedure of manual segmentation can be divided into two steps: manual segmentation 

of the MTL cortex and the hippocampus. Manual segmentation of the MTL cortex was 

initialized with the manual segmentations of the PMC-T2 atlas set (in the space of the T2w 

MRI) propagated to the space of the T1w MRI. Information from both T1w and T2w MRI 

scans of the same subject was taken into account during manual segmentation, which is 
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crucial for separating dura from the cortex. For the hippocampus, an automatic segmentation 

was first generated and followed by manual editing. All edits and segmentations were 

performed using ITK-SNAP (Yushkevich et al., 2006).

2.3.1 | Segmentation of MTL cortex and dura—Manual segmentations of the MTL 

cortex from the PMC-T2 atlas set from Yushkevich, Pluta, et al. (2015) and Xie et al. (2017) 

were propagated to the space of the aligned T1w MRI, followed by manual edits and 

addition of the dura label (more details regarding the segmentation protocol for the MTL 

cortex can be found in these two citations). Figure 2 shows three examples that illustrate the 

workflow. Details are described below.

Alignment between T2w MRI and the T1w MRI of the same subjects were performed 

following the steps below:

1. The T1w MRI was rigidly aligned to the T2w MRI using the ANTs (http://

stnava.github.io/ANTs/) with mutual information as the similarity metric.

2. The T1w MRI was upsampled to 0.5 × 0.5 × 1.0 mm3 by applying a patch-based 

SR technique (Manjón et al., 2010) for the purpose of bringing the resolution of 

the T1w MRI closer to that of the T2w MRI. Also, the SR upsampling increases 

the contrast between the dura and gray matter in T1w MRI so that the boundary 

between them can be better visualized.

3. The T2w MRI and the corresponding manual segmentation were resampled to 

0.4 × 0.4 × 1.3 mm3 using linear and nearest neighbor interpolation, respectively. 

The purpose of this step is to make the voxel size of the T2w MRI and SR T1w 

MRI similar.

4. The interpolated T2w MRI was cropped based on its manual segmentation with a 

margin of 10 voxels in all directions. This is done separately for left and right 

hemispheres.

5. From experiments, we found that global rigid intermodality registration [Step 

(1)] is not sufficient to accurately align the bilateral MTL regions which is 

probably due to small local spatial distortion of the two modalities. In order to 

generate better alignment of the MTL between the two modalities, for each 

hemisphere, affine registration was performed between the SR T1w MRI and the 

cropped upsampled T2w MRI, initialized with the rigid transformation between 

the whole brain T1w MRI and T2w MRI obtained in Step (1). This additional 

local affine registration, which was not included in the prior work (Xie et al., 

2016), is essential for accurate alignment of the MTL between the two 

modalities.

6. The SR T1w MRI was transformed and resampled to the cropped upsampled 

T2w MRI space (referred to as registered SR T1w MRI), in which manual 

segmentations of the MTL cortex and the hippocampus were performed.

After registration of the T2w and T1w MRI described above, the MTL region of both 

modalities are well aligned as shown in the first two images of each example in Figure 2. 
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Labels of the MTL cortex, including cortical labels (ERC, BA35, BA36, PHC) and sulcus 

labels (CS and occipitotemporal sulcus [OTS]), were copied over to the registered SR T1w 

MRI (the third and the fourth images of each example in Figure 2). Because of slight 

differences in appearance between T1w and T2w MRI and small errors in registration due to 

highly anisotropic voxel size of T2w MRI, intermodality registration and the upsampling of 

both modalities, the labels were checked and manually edited to correctly match the border 

with the white matter, CSF and dura. For these edits, both the T1w and T2w MRI of the 

same subject were opened side by side in ITK-SNAP so that boundaries can be determined 

using information from both modalities (the fifth image of each example in Figure 2). Note 

that only the outer borders with surrounding regions were adjusted, not the borders between 

the different MTL cortices. Only the last slice of the ERC was adjusted, as a transition slice, 

extending half the length of one slice anterior (note that these two slices translate to one slice 

on the T2w MRI). This is similar to the procedure in Berron et al. (2017). Because of small 

registration errors and perhaps slight differences in the visualization of the hippocampus on 

T1w and T2w MRI, the anterior and posterior borders of the MTL cortices did not follow 

the protocol as described in Yushkevich, Pluta, et al. (2015) for some subjects. To reach 

consistency between subjects but to minimize changes to the original segmentations, an 

optimal anterior and posterior border was decided upon based on the full atlas set. The ERC, 

BA35, and BA36 extend one 1.3 mm slice anterior to the first slice of the hippocampus (was 

one 2.6 mm slice in the original protocol), ERC extends two 1.3 mm slices posterior to the 

most posterior slice of the uncus (same as in original protocol) and BA35/BA36 extends four 

1.3 mm slices (same as in original protocol). The most anterior slice of the PHC is one slice 

posterior to the end of BA35 and BA36 (same as in original protocol) and the most posterior 

slice is fourth most posterior 1.3 mm slice of the hippocampus (was second most posterior 

2.6 mm slice in original protocol). All subjects were visually checked and the segmentations 

were adjusted to match these boundary rules. Any given label needed to be extended at most 

two slices, where borders were matched to adjacent slices. In none of the cases the anatomy 

changes dramatically from one slice to the next, making these adjustments feasible.

Importantly, along the full length of the MTL cortex, a label for the dura mater was assigned 

to the voxels inferior to the corrected MTL cortex labels that have gray appearance in the 

registered SR T1w MRI and dark appearance in the resampled T2w MRI. Of note, the 

segmentation of the dura was informed by the registered T2w MRI, from which the 

boundary between dura and the cortex can more easily be identified. This is especially 

crucial for the situation when dura is completely attached to the cortex and is difficult to 

visualize in T1w MRI (Example 1 in Figure 2). In some cases, a thin layer of CSF between 

the dura and gray matter is visible in SR T1w MRI (green arrow in Example 2 in Figure 2), 

that is, a layer of voxels that have much darker intensity between the dura and gray matter in 

SR T1w MRI, which helps guide the dura segmentation. The CSF voxels were assigned a 

miscellaneous label. Moreover, in some cases, this layer of CSF is not visible; however, the 

dura is not completely attached to the cortex either (Example 3 in Figure 2). The portion of 

the dura near the brain stem and inferior to the CS that is not adjacent to the cortex (white 

arrows in Figure 2) also provides clues for automatic and manual segmentation of the dura. 

The anterior and posterior extents of the dura are limited to the slices with MTL cortex 

labels (ERC, BA35, BA36, and PHC).
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2.3.2 | Segmentation of the hippocampus—The European Alzheimer’s Disease 

Consortium and ADNI harmonized protocol (HarP) (Boccardi et al., 2015; Frisoni et al., 

2015) is a well-validated HarP for hippocampus segmentation in T1w MRI. To be consistent 

with the HarP protocol, we chose a subset (11 controls, 13 MCI patients, and 8 AD patients) 

of the publicly available HarP training set from ADNI described in Boccardi, Bocchetta, 

Morency, et al. (2015) as the training set to automatically segment the registered SR T1w 

MRI (obtained in Section 2.3.1) of the 29 cases in the PMC-T1 atlas set using the ASHS 

package/software (see Section 2.3.1 for a brief description). These automatic segmentations 

were used to initialize the manual segmentation of the hippocampus. The characteristics of 

the HarP training set and the details of the automatic segmentation pipeline are described in 

Supplementary Material B.

All segmentations were visually checked and edited where necessary in three planes, 

following the HarP protocol. Two adjustments were made to the HarP protocol. First, the 

medial border of the hippocampus was extended to be continuous with the MTL cortex 

generated in Section 2.3.1. The medial border therefore followed the protocol from Wisse et 

al. (2012). In the most posterior slices, the hippocampal medial border was located at the 

most medial point of the cortex not including the calcarine sulcus. The hippocampus did not 

always reach the parahippocampal gyrus in these most posterior slices. Second, this medial 

border was executed until the slice where the hippocampus was embedded in the splenium, 

to improve the transition to the decreasing size of the hippocampus on consecutive slices. 

Moreover, the hippocampus was split in an anterior and posterior region, where the border 

was defined by the most posterior slice of the uncus, which was included in the anterior 

hippocampus (Malykhin et al., 2007).

2.4 | Automatic segmentation using ASHS

2.4.1 | Construction of ASHS-T1 atlas using the ASHS training pipeline—The 

original T1w MRI, whole-brain SR T1w MRI together with the bilateral manual 

segmentations in the space of the SR T1w MRI are fed into the ASHS training pipeline to 

generate an atlas (ASHS-T1 atlas). The ASHS-T1 atlas (https://www.nitrc.org/frs/

shownotes.php?release_id=3851) and the ASHS pipeline (https://www.nitrc.org/projects/

ashs) are publicly available. The ASHS training pipeline is described in detail in 

Yushkevich, Pluta, et al. (2015) and summarized briefly in the following steps:

1. An unbiased whole brain population template is built using the T1w MRI of all 

the subjects.

2. The region of interest (ROI) of each hemisphere was identified by averaging the 

corresponding manual segmentations that are warped to the space of the 

template.

3. Each SR T1w MRI and the corresponding segmentation were warped to the 

space of the template and cropped around the ROI.

4. Pairwise registrations between all the subjects were performed between the 

warped and cropped scans.
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5. Label fusion was performed for each atlas in its native space using the rest of the 

atlases as candidates.

6. AdaBoost classifiers were trained to learn the systematic error between the 

automatic segmentation and the manual segmentations.

2.4.2 | Application of ASHS-T1 atlas to new images—Once the ASHS-T1 atlas is 

trained, we can use the ASHS segmentation pipeline to automatically segment the T1w MRI 

scan of a new subject. Different from the pipeline described in Yushkevich, Pluta, et al. 

(2015), the proposed pipeline only takes the T1w MRI scan as input and does not require the 

T2w MRI scan. In brief, it involves the following steps:

1. The T1w MRI of the target subject is first upsampled to 0.5 × 0.5 × 1 mm3 using 

the SR technique (Manjón et al., 2010).

2. The ROI around the left and right MTL are identified in the target SR T1w image 

by registering to a whole-brain template generated in the training pipeline.

3. For each target ROI, the corresponding ROIs in the atlas set are registered to it 

using ANTs with normalized cross-correlation metric (Avants et al., 2008).

4. Atlas labels are then warped to the target ROI and combined using the joint label 

fusion algorithm (Wang & Yushkevich, 2013).

5. The process is repeated in a bootstrapping fashion, where the initial segmentation 

of the target structures is used to initialize affine alignment between the atlas and 

target ROIs. This bootstrapping results in fewer failed atlas-to-target registrations 

and better overall segmentation accuracy. The automatic segmentation generated 

from this step is referred to as the “Heur” output (The name “Heur” stands for 

heuristic rules that can be specified in ASHS. In our prior work on T2-weighted 

MRI (Yushkevich, Pluta, et al., 2015), we apply some heuristics to cut off 

anterior/posterior parts of cortical labels. Although no heuristic rules were used 

in this study, we keep the naming convention the same to be consistent with the 

outputs of the ASHS software.).

6. Two Adaboost classifiers, which were trained on shape features (the output 

referred to as the “NoGray”) or shape and gray-scale intensity features 

(“UseGray”) to correct for systematic errors generated in the multiatlas label 

fusion step, are applied to further improve the automatic segmentation. Since the 

classifiers were trained on the images of the atlas set, they may not generalize 

well to images acquired with different MRI imaging protocols. Therefore, using 

the “UseGray” output is only recommended if the target T1w MRI scan is 

acquired with a similar protocol as the atlas set.

Final bilateral automatic segmentations are generated in the target SR T1w MRI space. For 

the atlas set of 29 subjects, the automatic segmentation in the space of the SR T1w MRI was 

generated in a leave-one-out manner using the remaining 28 subjects as atlases. The 

segmentation accuracy of the “UseGray” output is reported in Table 3 and those of all the 

three outputs (“Heur”, “NoGray,” and “UseGray”) are also computed and reported in Table 

S1.
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When segmenting the baseline scans of the ADNI cohort, the whole 29-subject ASHS-T1 

atlas set was used. Because of the difference in imaging protocol between the ADNI and the 

PMC-T1 atlas set, it is not appropriate to use the “UseGray” output. When quality control 

(Section 2.4.3) was performed, we observed that the dura and MTL cortex segmentation is 

of better quality when using the “Heur” output compared to the “NoGray” and thus the 

former is used. The segmentation accuracy in terms of DSC between automatic and manual 

segmentations of “Heur” is comparable but slightly lower (1.5% maximum DSC) than 

“UseGray” shown in Table S1. Volumetric and thickness (see Section 2.5.3) measurements 

of bilateral anterior/posterior hippocampus, ERC, BA35, BA36, and PHC were extracted for 

each subject.

2.4.3 | Quality control—The quality of all the automatic segmentations generated by 

ASHS-T1 was visually checked. The pipeline successfully labeled the baseline T1w MRI 

scans of all the 663 ADNI subjects while small errors occurred in a small subset of the 

subjects. Specifically, we observed undersegmentation in the lateral border of the 

hippocampus in 28 out of 663 subjects (seven Aβ− control, two preclinical AD, eight early 

prodromal AD, seven late prodromal AD, and four dementia). In 16 out of 663 subjects (one 

Aβ− control, one early prodromal AD, six late prodromal AD [one overlap], and eight 

dementia [one overlap]), oversegmentation of MTL cortices were identified. This is 

unavoidable partially due to the lack of contrast between cortex and dura. Examples of the 

common segmentation errors are shown Figure S1.

2.5 | Additional image processing

2.5.1 | Intracranial volume—Intracranial volume (ICV) was segmented from the T1w 

MRI of each ADNI subject using an in-house ICV segmentation software using ASHS with 

a training set of 27 T1w MRI scans (15 controls and 12 aMCI) and the corresponding 

manual ICV segmentations. The manual labels in this atlas set were generated with the 

guidance of the coregistered computer tomographic (CT) scans of the same subjects. Since 

the boundary between the skull and the soft tissue is clear in CT scans, we were able to 

obtain a relatively accurate manual segmentation of the ICV. Supplementary Material C 

describes the detail of ICV automatic segmentation pipeline.

2.5.2 | Cross-validation experiment in the atlas set in the space of the T2w 
MRI (ASHS-T2)—To compare the segmentation accuracy of the MTL cortices of the 

proposed pipeline that only utilizes T1w MRI to that using both T1w and T2w MRI 

(Yushkevich, Amaral, et al., 2015; Yushkevich, Pluta, et al., 2015), leave-one-out cross 

validation was also performed using the PMC-T2 atlas (comparisons were performed 

between the automatic and manual segmentations in the space of the T2w MRI). The same 

experiment has been done in Yushkevich, Pluta, et al. (2015). However, since we have 

updated the ASHS software (ASHS version 2.0.0 rather than 1.0.0, https://www.nitrc.org/

frs/?group_id=370) and the atlas manual segmentation [the PHC and OTS labels were added 

as described in Xie et al. (2017)], the results are slightly different from that in Yushkevich, 

Pluta, et al. (2015). Note that we did not perform this analysis for the hippocampus, as the 

segmentation protocol for the T1w and T2w hippocampus were different.
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2.5.3 | Thickness measures of the MTL cortices extracted from the ASHS-T1 
automatic segmentation—For MTL cortices, thickness measures may be more 

appropriate compared to volume because they are less sensitive to uncertainty in boundary 

estimation between cortical regions. A multitemplate thickness analysis pipeline (Xie et al., 

2017, 2014) was applied to the MTL cortex labels (ERC, BA35, BA36, and PHC) to extract 

thickness. Since large anatomical variability, that is, different branching and folding patterns 

of the cortex, exists at the MTL cortex, traditional single-template-based approaches may 

not generate accurate thickness measures. The thickness pipeline takes anatomical 

variability into account by fitting corresponding variant-specific template to the target 

segmentation, which has been shown to generate more accurate thickness measurement (Xie 

et al., 2017, 2014).

2.5.4 | Volume and thickness measures of hippocampus, ERC, and PRC 
using FreeSurfer—In order to compare the volume and thickness measurements extracted 

from the proposed pipeline to that from an established paradigm for T1w MRI, FreeSurfer 

version 6.0 (Fischl, 2012) was applied to the T1w MRI scans of both the 29 subjects in the 

atlas set and the ADNI data set. Volume measurements of the hippocampus were extracted 

from the “aseg.stats” file and volume and thickness measures of the ERC and PRC were 

extracted from “lh.BA_exvivo.thresh. stats” and “rh.BA_exvivo.thresh.stats” files. The 

location of the ERC and PRC is estimated using a probabilistic framework with templates 

constructed from ex vivo atlases described in Fischl et al. (2009) and Augustinack et al. 

(2013), respectively.

2.6 | Statistical analysis

All statistical analyses in this article are two-tailed with significance levels of p = .05 unless 

stated otherwise. Bilateral measurements of each subregion were averaged.

2.6.1 | Analysis of demographic and MMSE data—To test the differences of 

demographic and MMSE between diagnosis groups, that is, aMCI-NC of the PMC atlas set 

and each patient-control pair of the ADNI data set, independent two-sample t test (age), 

Wilcoxon rank sum test (education, MMSE), and contingency χ2 test (gender) were 

performed.

2.6.2 | Evaluate the accuracy of the automatic segmentation—To evaluate the 

automated segmentations generated by ASHS-T1 and ASHS-T2, average DSC (Dice, 1945) 

between the leave-one-out automatic segmentations and the corresponding manual 

segmentations of each image in the PMC atlas sets were computed. In addition, we also 

computed the intraclass correlation (ICC) between volume measurements of the MTL 

subregions extracted from the automatic segmentations in the PMC-T1 atlas set and those 

obtained using the edited manual segmentations in T1w MRI space. To compare the ICC for 

the ASHS-T1 pipeline with that of the ASHS-T2 pipeline, similar analysis was performed 

for the MTL cortex labels (ERC, BA35, BA36, and PHC) for the PMC-T2 atlas set as well. 

ICC is computed using the “icc” function with the R package psy 1.1 implementing the 

method described in Shrout and Fleiss (1979).
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2.6.3 | Group analysis between patients and Aβ−controls in ADNI—To evaluate 

the clinical utility, the four patient groups were compared to Aβ− controls separately. For 

each volume measure, a general linear model with group membership as the factor of 

interest, age and ICV as covariates, was fitted to obtain the t statistics for the control-patient 

contrast. Bonferroni corrected significance level (p < .05/10) is used to determine significant 

effects. For thickness measures, similar analysis was performed but only age was used as 

covariate and the Bonferroni correction significance level was set to p < .05/6.

3 | EVALUATION EXPERIMENTS AND RESULTS

We first evaluated the accuracy of the automatic segmentation of ASHS-T1 with the manual 

ones in the space of the T1w MRI and compare the performance of ASHS-T1 with that of 

ASHS-T2 (Section 3.1). Then, we investigated the extent to which an established analysis 

method for T1w MRI, that is, FreeSurfer, mislabels the dura mater and the cortex (Section 

3.2). Finally, to demonstrate clinical utility of the proposed pipeline, we compared the 

volume and thickness measures extracted using the proposed pipeline between patients and 

controls using a large data set from the ADNI and compared this with FreeSurfer (Section 

3.3).

3.1 | Evaluate accuracy of the automatic segmentation with manual segmentation

Primary validation of segmentation accuracy was performed on the set of 29 subjects from 

the PMC atlas for whom T1w MRI, T2w MRI, and both automatic and manual 

segmentations of the SR T1w MRI and T2w MRI are available.

The DSC results and volume measurements are summarized in Table 3. High DSCs of 

anterior (0.92), posterior (0.90), and whole (0.93) hippocampus segmentation were 

observed. The good accuracy in segmenting dura (0.75) and the MTL cortex labels (ERC: 

0.76, BA35: 0.71, BA36: 0.79, and PHC: 0.80) indicates that the proposed pipeline can 

reliably segment the dura and the subregions of the MTL cortex. The slightly lower DSC of 

BA35 is not surprising given that it is a small structure and high anatomical variability exists 

in this region. No significant differences in segmentation accuracy, tested by two-sample t 
test, were found between aMCI and NC for all labels. In addition, the DSCs of the MTL 

cortex labels of ASHS-T1 are comparable to that of the ASHS-T2 (Yushkevich, Pluta, et al., 

2015). The DSC of the proposed pipeline in segmenting ERC (DSC = 0.76) is slightly lower 

than that in T2w MRI (DSC = 0.79), which could be due to the limited ability to resolve 

gray matter boundaries because of the lower resolution and the confound of dura in T1w 

MRI. Importantly, we observe that the volume of the dura mater is larger than that of the 

ERC and BA35, indicating that segmenting dura mater as cortex could significantly 

confound volume measures of subregions in the MTL cortex.

From the ICC results, as reported in Table 3, ASHS-T1 demonstrates high accuracy in 

segmenting anterior/posterior hippocampus (0.95 and 0.89), BA35 (0.77), and BA36 (0.76). 

The ICC for ERC (0.69) and PHC (0.64) were slightly lower. The ICC values did not show 

notable differences between the ASHS-T1 and T2 pipeline. According to the Bland–Altman 

plots, shown in Figure 3, there exists a small bias in ERC segmentation, that is, the pipeline 

tends to undersegment larger ERC volumes and oversegment smaller ones. This would likely 
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lead to a slight underestimation of group differences for ERC. No bias is observed for the 

other subregions.

3.2 | Dura mislabeling as cortex

In this section, we performed experiments to test the two hypotheses that were introduced in 

the Introduction, that is, (a) the MTL cortex is commonly oversegmented by FreeSurfer 

because of the mislabeling of the adjacent dura mater and (b) the degree of dura mislabeling 

as cortex by FreeSurfer is different between patients and controls.

To test the first hypothesis, among subjects in the PMC-T1 atlas set, we first resampled the 

FreeSurfer whole brain segmentations to the space of the SR T1w MRI and then computed 

the average percentage of voxels labeled as dura in the manual segmentations that were 

mislabeled as gray matter or other by the proposed pipeline and FreeSurfer. The results, 

shown in Table 4, support the notion that a large proportion of dura (62.4%) is segmented as 

gray matter by FreeSurfer. We note that FreeSurfer does not have a specific label for the 

dura and therefore has to label the dura voxels as something else; including them in the gray 

matter introduces error to cortical thickness computations. On the other hand, the majority 

(71.9%) of dura voxels are correctly labeled by the proposed pipeline, only 6.5% of them are 

labeled as gray matter and the amount of dura mislabeling as cortex is not significantly 

different between aMCI and NC (6.8 ± 3.1% vs. 6.2 ± 4.2%, p > .1, revealed by two-sample 

t test).

The second hypothesis can be tested using the ADNI data set with controls and patients at 

different stages of AD. Since manual segmentation of the MTL cortex and dura is not 

available in the ADNI data set, the degree of dura mislabeling as gray matter by FreeSurfer 

is computed using the automatic ASHS-T1 segmentation, that is, the average percentage of 

voxels labeled as dura by the ASHS-T1 that are labeled as gray matter. We believe this is a 

suitable measure because of the following evidence:

1. In the PMC-T1 atlas set, we computed the degree of dura mislabeling as gray 

matter by FreeSurfer relative to the dura label in the automatic segmentations 

generated by ASHS-T1 and relative to the dura label from the manual 

segmentations. These measurements were highly correlated (Pearson correlation 

r = .946, p = 9.3 e–15), shown in Figure S2.

2. In the PMC-T1 atlas set, no significant differences were observed between aMCI 

and controls in segmentation accuracy of dura (DSC reported in Table 3, 0.74 vs. 

0.76) or for mislabeling of dura as cortex (6.8 vs. 6.2%) using the automatic dura 

segmentations generated by ASHS-T1. Therefore, it is unlikely that it will 

introduce bias between patients and controls.

3. All the segmentations of the ADNI subjects generated by the T1 pipeline used in 

this analysis were visually checked and only segmentations that have high-

quality MTL cortex segmentation were used in this analysis and thus the bias 

induced by segmentation errors is limited.

Figure 4 summarizes the percentage of dura voxels segmented as gray matter by FreeSurfer 

in Aβ− controls and the four patient groups. The amount of dura mislabeling as cortex 
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decreases with increasing disease severity, probably due the more distinct separation 

between the MTL cortex and the dura (Figure 4). The proportion of mislabeling is 

significantly different between Aβ− controls and patients at early prodromal AD, late 

prodromal AD, and dementia stages revealed by two-sample t tests. Since manual 

segmentation of the ADNI data set is not available, it is not feasible to evaluate the amount 

of dura mislabeling as cortex of the proposed method. However, since we did not see large 

difference of dura mislabeling as cortex between aMCI and controls in the PMC-T1 atlas set 

(0.6%), it seems unlikely that the observed large differences of FreeSurfer dura mislabeling 

between groups (3.5, 6.5, and 8.6% between patients at early, late prodromal AD, dementia, 

and controls, respectively) are mainly due to imperfect automatic segmentation of ASHS-T1.

3.3 | MTL atrophy in early stages of AD in ADNI

We compared the volume and thickness measures extracted using the proposed pipeline 

between patients at different stages of AD and Aβ−controls in ADNI and performed a 

comparison with FreeSurfer. To make this comparison fair, we report here the ASHS-T1 

results on the full ADNI data set, without excluding subjects based on the quality control 

procedure described in Section 2.4.3. However, excluding the subjects with poor ASHS-T1 

segmentation quality did not significantly alter the comparison with FreeSurfer, as shown in 

Table S2.

As shown in Tables 5 and 6, we observed Bonferroni-corrected significant group effects at 

the early prodromal AD stage in posterior hippocampus volume (F = 16.8, p = 5.2e–5), 

BA35 thickness (F = 10.4, p = 1.4e–3), ERC volume (F = 9.5, p = 2.2e–3), and BA35 

volume (F = 8.2, p = 4.5e–3). Volume and thickness of all the subregions were significantly 

smaller in patient groups at the late prodromal stage and the differences are bigger in 

dementia. No significant differences were observed in the preclinical stage. However, there 

was a trend level (F = 2.8, p = .093) difference in BA35 thickness between preclinical AD 

patients and controls.

Overall, the FreeSurfer results were similar to that of ASHS-T1, that is, (a) none of the 

measures from FreeSurfer showed significant differences in the preclinical AD stage; (b) 

Bonferroni-corrected significant effects were observed in the early prodromal AD stage 

(hippocampus volume [F = 23.0, p = 2.0e–6] and PRC volume [F = 9.8, p = 1.9e–3]); and 

(c) all measurements showed significant differences in late prodromal AD and dementia 

stages. FreeSurfer ERC and PRC thickness were consistently about 50% thicker than the 

corresponding measurements (ERC and BA35) by ASHS-T1, which is probably due to the 

mislabeling of dura as cortex. In addition, the mislabeling of dura seems to introduce 

instability of FreeSurfer measurements of the MTL cortex in Aβ− controls and early stages 

of AD (preclinical and early prodromal AD). For example, FreeSurfer ERC volume 

decreased from Aβ− controls (802.5 mm3) to preclinical AD (768.2 mm3) but became 

slightly higher in early prodromal AD (804.1 mm3). Also, FreeSurfer volume and thickness 

measurements were more variable (higher SD) than the corresponding measurements 

generated by the proposal pipeline.
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4 | DISCUSSION

In this article, we present an automatic segmentation pipeline for T1w MRI for measuring 

MTL subregions accounting for the confound of dura and variable anatomy of the MTL 

cortex. The cross-validation accuracy of ASHS-T1 relative to manual segmentation was 

relatively high, with DSC ranging from 0.71 to 0.93. The segmentation accuracy of the 

ASHS-T1 pipeline is comparable to that of our T2 pipeline (except for ERC for which the 

accuracy is slightly lower, shown in Table 3). Cross-validation experiments in the PMC-T1 

atlas showed that ASHS-T1 can reliably separate dura from gray matter, only mislabeling 

6.5% of the dura as gray matter, whereas the FreeSurfer mislabels 62.4% of dura as gray 

matter, leading to about 50% thicker cortex in ERC and PRC. In the ADNI data set, we 

showed that the degree of dura mislabeling in FreeSurfer decreases with increasing disease 

severity, indicating a bias where the cortex is oversegmented to a larger extent in Aβ− 

controls than in patients. This could potentially lead to an overestimation of group 

differences in later stages of the disease. Finally, in the ADNI data set, we demonstrated that 

our pipeline picks up changes in early prodromal AD in the MTL, including in ERC and 

BA35, which agrees with the known progression of NFT pathology, but also in the posterior 

hippocampus. Moreover, the volume and thickness loss become more severe and widespread 

with increasing disease severity.

The ASHS-T1 pipeline has several unique aspects and strengths. First, it provides granular 

measures of the MTL, including subdivision of the PRC and hippocampus, for T1w MRI. It 

could therefore be very useful in clinical trials and large-scale studies (e.g., ADNI) in older 

populations in the interrogation of, for example, AD or age-related effects on the MTL, the 

anterior and posterior MTL networks and memory processes that differentially depend on 

these regions. In contrast to most previous methods for T1w MRI, our multiatlas approach 

for labeling MTL cortical regions takes into account the anatomical variability of the MTL 

cortex, which is known to influence the locations of borders between MTL cortical regions. 

The accuracy of the automated segmentations generated by ASHS-T1 compared to the 

manual segmentations is good with a DSC >0.76, except for BA35, and ICC >0.76, except 

for ERC and PHC. As far as we know, this is the first validation of automated segmentation 

of MTL cortices against manual segmentations on T1w MRI in an older population and the 

only other study performing such a validation on T2w MRI was of this same pipeline. 

ASHS-T1 demonstrated similar accuracy for the MTL cortices as the T2w-based ASHS, 

with a slightly lower accuracy for the ERC. Two other studies performed an evaluation of 

MTL cortices in younger adults and patients with temporal lobe epilepsy and reported DSC 

values in the same range (Hu, Coupé, Pruessner, & Collins, 2014; Kim, Caldairou, 

Bernasconi, & Bernasconi, 2018). With regard to hippocampus, our pipeline performs 

comparable to state-of-the-art methods (Collins & Pruessner, 2010; Coupé et al., 2011; 

Leung et al., 2010; Platero & Tobar, 2016; Wang et al., 2013).

In addition, to the best of our knowledge, this is the first automated pipeline that directly 

labels dura when segmenting MTL subregions in T1w MRI. Experimental results indicate 

that the dura can be reliably separated from the gray matter (the DSC and ICC are 0.75 and 

0.85, respectively), indicating that the portions of the dura that do not merge with the cortex 

(white arrows in Figure 2) provide sufficient features for automatic segmentation when there 
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is low or even no contrast between the dura and the cortex. The importance of accounting for 

the confound of dura in T1w-MRI was shown in the analyses of dura labeling in the 

FreeSurfer pipeline which indicated that not taking the dura into account can lead to (a) 

mislabeling of dura as gray matter causing errors in volume or thickness estimations and (b) 

a bias where this mislabeling is larger in controls than patients. However, it should be noted 

that while our pipeline explicitly accounts for the dura, it still makes small errors in some 

subjects (16 out of 663 ADNI subjects, Section 2.4.3) where small portions of the dura are 

counted towards the gray matter as shown in Figure S1. With the limited contrast differences 

between dura and gray matter, this cannot be completely avoided. Moreover, this slight 

mislabeling of dura may explain the slightly lower accuracy of the ERC, as it is adjacent to 

the dura for a relatively larger extent than other MTL cortices. With the lower resolution and 

limited contrast in T1w MRI, it is more difficult to resolve this boundary than in T2w MRI. 

For that reason, MTL cortex segmentation on high-resolution T2-weighted images is still 

preferred.

A limitation of ASHS-T1 is that the most anterior portions of the ERC and PRC are not 

included in the segmentation, which is especially of interest for diseases such as semantic 

variant primary progressive aphasia which show a clear anterior-to-posterior gradient of 

atrophy in the MTL (Chan et al., 2001; Davies, Halliday, Xuereb, Kril, & Hodges, 2009). 

We will include these regions in future work. Moreover, the anterior and posterior border of 

ERC and PRC are directly determined by the extent of the hippocampal head. This could 

potentially introduce an error where ERC and PRC volume changes along with hippocampal 

head volume, that is, if the hippocampal head extends for a lower number of slices, ERC and 

PRC will automatically do so as well. This will affect volume measures, but likely less so 

for thickness. Indeed, in later stages of the disease the percentage volume loss in ERC and 

PRC is larger than the percentage thickness loss, which may reflect this bias. This is not 

reflected in the p values probably due to larger variance of volume measurements as they are 

noisier. Qualitatively, a stronger association of anterior hippocampal volume with ERC and 

BA35 volume is found than with ERC and BA35 thickness, separately for both hemispheres 

(Left: ERC volume: ρ = 0.74, thickness: ρ = 0.57; BA35 volume: ρ = 0.68, and thickness: ρ 
= 0.57—Right: ERC volume: ρ = 0.75, thickness: ρ = 0.53, BA35 volume: ρ = 0.61, and 

thickness: ρ = 0.49).

In light of above described strengths and limitations, there are certain guidelines that should 

be followed when using ASHS-T1. Careful assessment of the MRI scans and segmentations 

is important, with common segmentation errors involving minor mislabeling of the dura and 

infrequent mislabeling of the lateral aspect of the hippocampus, which was observed in a 

small number of ADNI subjects. Because of the composition of the PMC-T1 atlas set, the 

most appropriate target population is older adults and MCI patients. However, we also 

applied the atlas to images of patients with early AD dementia, and careful quality 

assessment indicated that the atlas performed well in this population. This matches our 

recent findings that varying the composition of an atlas set between only controls, only MCI 

and/or AD patients, or a mixture of the two groups, did not significantly affect segmentation 

accuracy (Xie et al., 2018). However, care is warranted when this atlas and pipeline are 

applied to other populations including other ages and diseases, or very different imaging 

protocols. When this atlas is applied to images acquired at a different platform or with a 
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different MRI protocol, it is recommended to use the “Heur” output (Step 5 in Section 

2.4.2).

To assess the clinical validity and utility of our pipeline, we applied it to the ADNI data set 

and compared different stages of AD with Aβ− controls on MTL subregional volume and 

thickness. Compared to the Aβ− controls, we observed a trend difference in BA35 thickness 

in preclinical AD (Aβ+ controls), a significant difference in ERC volume, BA35 volume and 

thickness and posterior and total hippocampal volume in early prodromal AD and in all 

regions in late prodromal AD and dementia. The observed earliest effect on BA35 is 

consistent with the earliest accumulation of NFT pathology in this region (Braak & Braak, 

1995, 1991; Ding et al., 2009). A recent study in a different, only partially overlapping, 

subset of ADNI showed a similar, but significant, decrease in BA35 thickness in preclinical 

AD (Wolk et al., 2017) using T2w MRI. The difference in significance may be due to more 

reliable segmentation of the MTL cortex because of a better contrast and separation of dura 

in T2w MRI as compared to T1w MRI. In light of the recently published A/T/N model (Jack 

et al., 2016), in future work, it will be interesting to further select cases who are also tau-

positive and investigate whether these subjects show increased neurodegeneration in BA35.

The spreading of atrophy to adjacent ERC and hippocampus in early prodromal AD also 

matches the known spreading of NFT pathology (Braak & Braak, 1995, 1991; Ding et al., 

2009) and other studies investigating MTL atrophy patterns in the early stages (Killiany et 

al., 2002; Krumm et al., 2016; Olsen et al., 2017; Stoub, Rogalski, Leurgans, Bennett, & 

deToledo-Morrell, 2010; Xu et al., 2000; Yushkevich, Pluta, et al., 2015). The volume loss in 

posterior hippocampus, rather than anterior hippocampus, was surprising, given that 

pathology starts in BA35, part of the PRC, which is thought to be more strongly connected 

to the anterior hippocampus, at least in the primate MTL (Aggleton, 2012) [although some 

inconsistency in the literature exists (Witter, Van Hoesen, & Amaral, 1989)]. One might 

therefore speculate that the anterior hippocampus could be affected earlier than the posterior 

hippocampus in AD. Only a few studies investigated atrophy in the anterior and posterior 

hippocampus in MCI, where one study reported specific atrophy in anterior regions (Martin, 

Smith, Collins, Schmitt, & Gold, 2010), but another did not (Greene & Killiany, 2012). 

Moreover, a qualitative inspection of studies using shape analysis of the hippocampus to 

investigate granular effects of MCI shows inconsistent findings not clearly pointing towards 

an anterior-to-posterior gradient of atrophy in MCI (Apostolova et al., 2012; Chételat et al., 

2008; Qiu et al., 2009). Additionally, tractography studies in primates indicate that the 

posterior hippocampus is more strongly connected with the PHC which is in turn connected 

via the cingulum bundle with regions such as the posterior cingulate cortex and precuneus 

[this has also been supported by fMRI studies (Aggleton, 2012; Das et al., 2014; Mufson & 

Pandya, 1984; Poppenk, Evensmoen, Moscovitch, & Nadel, 2013)] which have been 

indicated recently to show the earliest amyloid pathology (Palmqvist et al., 2017). This 

amyloid pathology, which is likely already present for years by the time subjects reach the 

early MCI stage, may have indirectly affected posterior hippocampal integrity. Moreover, the 

posterior hippocampus is part of the posterior MTL network (Ranganath & Ritchey, 2012), 

which has been found to already show atrophy in early MCI (Das, Mancuso, Olson, Arnold, 

& Wolk, 2016). Finally, the increasing severity and widespread atrophy of the MTL in late 

prodromal AD and dementia again matches known spreading of NFT pathology (Braak & 
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Braak, 1995, 1991; Ding et al., 2009) and other in vivo MTL work (de Flores, La Joie, & 

Chételat, 2015; Dickerson et al., 2001; Jauhiainen et al., 2009; Stoub et al., 2010).

In general, FreeSurfer performed fairly similar in this data set consisting only of T1w MRI 

scans in characterizing the MTL atrophy pattern in the different AD stages by finding 

morphometric changes in PRC and hippocampus in early prodromal AD and increasing 

atrophy, including ERC, at later stages. The most evident difference in the early stages is a 

lack of significant ERC volume or thickness loss in early prodromal AD using FreeSurfer. In 

fact, when looking carefully at the ERC volume measures, a fluctuation can be observed 

where ERC volume loss is observed in preclinical AD compared to controls but then an 

increase is observed in early prodromal AD, where ERC volumes again match those in the 

control group. This may be due to mislabeling dura as ERC which may introduce additional 

noise. Given that ERC atrophy is expected to be subtle at this stage, and that a bias with 

regard to the dura mislabeling was observed at later disease stages, the inclusion of dura in 

the ERC label may lead only to increased measurement error. Surprisingly, even though we 

observed a bias in FreeSurfer of decreasing mislabeling of dura, this did not lead to larger 

effect sizes for group differences between late prodromal AD or dementia compared to 

controls. Perhaps this effect is counterbalanced by some other features of the labels, for 

example, the effect size may be weakened by the larger anterior extent of ERC and PRC in 

FreeSurfer which may potentially not show equal neurodegeneration along the full length. 

An important note is that the ERC and PRC in FreeSurfer do not represent completely the 

same regions as the ERC and the combined BA35 and BA36 into PRC in ASHS-T1. ERC 

and PRC in FreeSurfer actually show a 44.7 and 40.8% overlap with BA35 of the manual 

segmentation in our atlas, and in fact, ERC and PRC in FreeSurfer have about 37% overlap 

with each other. Having a granular label of BA35 rather than including it in ERC or a larger 

PRC label is advantageous, especially in the earliest stages of AD where NFT pathology is 

only thought to affect the transentorhinal cortex, which approximates our BA35 label, and a 

small portion of the lateral ERC. We did observe BA35 thinning in preclinical AD compared 

to Aβ− controls with our pipeline, although only at a trend level, which could potentially 

due to the heterogeneity in disease severity of the preclinical group.

5 | CONCLUSIONS

In conclusion, we presented a reliable automated pipeline for obtaining granular measures of 

MTL subregions in T1w MRI, explicitly accounting for the confound of the dura. We 

demonstrated the clinical utility of this approach by showing atrophy of early Braak regions 

in early prodromal AD which becomes more severe and widespread in later stages. These 

findings should be replicated in other cohorts. Interesting and important future directions are 

establishing change in MTL regions over time, as longitudinal atrophy is more closely 

linked to clinical status and is important for tracking disease progression or as potential 

marker in clinical trials and establishing the association with, for example, tau-PET uptake 

to better understand the drivers of neurodegeneration. This pipeline could be particularly 

useful for investigating tau-PET tracers that show high uptake in the dura. We hope that this 

publicly available atlas and software including a cloud-based service (https://

sites.google.com/view/ashs-dox/home and https://sites.google.com/view/ashs-dox/cloud-
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ashs/overview) will serve the scientific community and enable the interrogation of the role 

of the MTL in aging, dementia, and cognition.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
The dura mater (indicated by purple lines) has similar intensity as gray matter in T1w MRI 

(the first column) but can be easily separated from the cortex in T2w MRI (the hypointensity 

layer in the second column). It is often segmented as part of the cortex by state-of-the-art 

algorithms, for example, FreeSurfer (the third column). A thin layer of CSF (green arrow) 

can be visualized in some subjects (second row, b) but not in the others (first row, a). White 

arrows point to the portions of the dura that are not merged with the cortex. CSF, 

cerebrospinal fluid; MRI, magnetic resonance imaging; T1w MRI, T1-weighted MRI; T2w 

MRI, T2-weighted MRI [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2. 
Examples showing the procedure of manual segmenting MTL cortices in T1w MRI using 

manual labels in the space of the T2w MRI. The dura mater is shown as the thin 

hypointensity layer in T2w MRI, which appears gray in T1w MRI, indicated by the purple 

lines. The green arrow points to a thin layer of CSF between dura and the cortex that exists 

in some subjects. The white arrows show places that the dura are not completely attached to 

the cortex, which are important features for manual and automatic segmentation. CSF, 

cerebrospinal fluid; MRI, magnetic resonance imaging; MTL, medial temporal lobe; T1w 

MRI, T1-weighted MRI; T2w MRI, T2-weighted MRI [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 3. 
Comparison of subregion volume measured by ASHS-T1 and manual segmentation in the 

space of T1w MRI (top panel) MRI using Bland–Altman plots. To compare with ASHS-T2 

(bottom panel), the comparisons between subregion volume generated in the space of T2w 

MRI and the corresponding manual segmentation in the PMC-T2 atlas set are also shown 

(.T2). HIPPO.T1 is a compound label by merging AHIPPO.T1 and PHIPPO.T1. AHIPPO, 

anterior hippocampus; ASHS, automatic segmentation of hippocampal subfields software; 

BA35/36, Brodmann area 35/36; ERC, entorhinal cortex; HIPPO, whole hippocampus; MRI, 

magnetic resonance imaging; PHC, parahippocampal cortex; PHIPPO, posterior 

hippocampus; PMC, Penn Memory Center; T1w MRI, T1-weighted MRI; T2w MRI, T2-

weighted MRI [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4. 
Percentage of dura voxels labeled as gray matter by FreeSurfer in all diagnosis groups. 

Examples of low, average, and high oversegmentation in controls and dementia patients are 

shown on top and bottom, respectively. AD, Alzheimer’s disease [Color figure can be 

viewed at wileyonlinelibrary.com]
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TABLE 1

Characteristics of the PMC atlas set

Normal control aMCI

N 15 14

Age (years) 66.3 (9.5) 71.9 (6.2)

Gender (M/F) 7/8 6/8

Education (years) 15.6 (2.6) 16.9 (2.8)

MMSE 29.5 (1.0) 26.9 (1.7)***

Note. All statistics are in comparison to cognitive normal control subjects. Independent two-sample t test (age), Wilcoxon rank sum test (education, 

MMSE), and contingency χ2 test (gender) were used. SD in parentheses.

Abbreviations: aMCI, amnestic mild cognitive impairment; MMSE, mini-mental state examination; PMC, Penn Memory Center.

***
p < .001.

Hum Brain Mapp. Author manuscript; available in PMC 2019 August 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xie et al. Page 31

TA
B

L
E

 2

C
ha

ra
ct

er
is

tic
s 

of
 th

e 
A

D
N

I 
da

ta
 s

et

A
β—

 c
on

tr
ol

P
re

cl
in

ic
al

 A
D

E
ar

ly
 p

ro
dr

om
al

 A
D

L
at

e 
pr

od
ro

m
al

 A
D

D
em

en
ti

a

N
19

0
95

14
2

10
9

12
7

A
ge

 (
ye

ar
s)

72
.3

 (
6.

0)
74

.8
 (

5.
9)

**
*

73
.6

 (
6.

9)
72

.3
 (

6.
8)

74
.4

 (
8.

2)
*

G
en

de
r 

(M
/F

)
10

0/
90

31
/6

4*
*

81
/6

1
57

/5
2

68
/5

9

E
du

ca
tio

n 
(y

ea
rs

)
16

.9
 (

2.
4)

16
.1

 (
2.

7)
*

15
.6

 (
2.

8)
**

*
16

.6
 (

2.
6)

15
.6

 (
2.

7)
**

*

M
M

SE
29

.0
 (

1.
3)

29
.0

 (
1.

1)
28

.0
 (

1.
7)

**
*

27
.2

 (
1.

9)
**

*
23

.0
 (

2.
1)

**
*

N
ot

e.
 A

ll 
st

at
is

tic
s 

ar
e 

in
 c

om
pa

ri
so

n 
to

 a
m

yl
oi

d-
β 

ne
ga

tiv
e 

(A
β−

) 
co

nt
ro

l s
ub

je
ct

s.
 I

nd
ep

en
de

nt
 tw

o-
sa

m
pl

e 
t t

es
t (

ag
e)

, W
ilc

ox
on

 r
an

k 
su

m
 te

st
 (

ed
uc

at
io

n,
 M

M
SE

),
 a

nd
 c

on
tin

ge
nc

y 
χ

2  
te

st
 (

ge
nd

er
) 

w
er

e 
us

ed
. S

D
 in

 p
ar

en
th

es
es

.

A
bb

re
vi

at
io

ns
: A

β,
 b

et
a-

am
yl

oi
d;

 A
D

, A
lz

he
im

er
’s

 d
is

ea
se

; M
M

SE
, m

in
i-

m
en

ta
l s

ta
te

 e
xa

m
in

at
io

n.

* p 
<

 .0
5.

**
p 

<
 .0

1.

**
* p 

<
 .0

01
.

Hum Brain Mapp. Author manuscript; available in PMC 2019 August 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xie et al. Page 32

TA
B

L
E

 3

Se
gm

en
ta

tio
n 

ac
cu

ra
cy

 (
m

ea
su

re
d 

by
 D

SC
) 

an
d 

IC
C

 r
el

at
iv

e 
to

 m
an

ua
l s

eg
m

en
ta

tio
ns

 u
si

ng
 le

av
e-

on
e-

ou
t c

ro
ss

 v
al

id
at

io
n.

 T
he

 a
tla

s 
co

ns
is

ts
 o

f 
14

 a
M

C
I 

pa
tie

nt
s 

an
d 

15
 c

og
ni

tiv
el

y 
N

C
. V

ol
um

e 
m

ea
su

re
m

en
ts

 o
f 

ea
ch

 s
ub

re
gi

on
 o

f 
th

e 
m

an
ua

l s
eg

m
en

ta
tio

ns
 a

re
 a

ls
o 

in
cl

ud
ed

 in
 th

e 
ta

bl
e.

 D
SC

s 
an

d 
vo

lu
m

e 
of

 

ea
ch

 s
ub

re
gi

on
 in

 b
ot

h 
he

m
is

ph
er

es
 a

re
 a

ve
ra

ge
d.

 M
ea

n 
an

d 
SD

 (
pa

re
nt

he
se

s)
 a

re
 r

ep
or

te
d 

in
 th

e 
ta

bl
e

Su
br

eg
io

n

T
1w

 M
R

I
T

2w
 M

R
I

V
ol

um
e 

(m
m

3 )
IC

C
D

SC
V

ol
um

e 
(m

m
3 )

IC
C

D
SC

A
nt

er
io

r 
hi

pp
oc

am
pu

s
1,

63
5.

3 
(3

63
.6

)
0.

95
0.

92
 (

0.
02

)
\

\
\

Po
st

er
io

r 
hi

pp
oc

am
pu

s
1,

58
5.

8 
(2

58
.1

)
0.

89
0.

90
 (

0.
02

)
\

\
\

W
ho

le
 h

ip
po

ca
m

pu
sa

3,
22

1.
1 

(5
35

.4
)

0.
98

0.
93

 (
0.

01
)

\
\

\

E
R

C
54

2.
0 

(2
58

.1
)

0.
69

0.
76

 (
0.

03
)

55
5.

6 
(1

30
.2

)
0.

71
0.

79
 (

0.
03

)

B
A

35
52

7.
2 

(1
17

.6
)

0.
77

0.
71

 (
0.

06
)

51
1.

9(
11

1.
9)

0.
71

0.
71

 (
0.

06
)

B
A

36
18

42
.9

 (
33

3.
7)

0.
76

0.
79

 (
0.

03
)

18
52

.5
 (

34
9.

3)
0.

72
0.

79
 (

0.
04

)

PH
C

94
1.

9 
(2

00
.6

)
0.

64
0.

80
 (

0.
03

)
94

6.
9 

(2
14

.3
)

0.
64

0.
79

 (
0.

04
)

D
ur

a 
m

at
er

71
7.

4 
(1

48
.3

)
0.

85
0.

75
 (

0.
05

)
\

\
\

A
bb

re
vi

at
io

ns
: a

M
C

I,
 a

m
ne

st
ic

 m
ild

 c
og

ni
tiv

e 
im

pa
ir

m
en

t; 
B

A
35

, B
ro

dm
an

n 
ar

ea
 3

5;
 B

A
36

, B
ro

dm
an

n 
ar

ea
 3

6;
 D

SC
, D

ic
e 

si
m

ila
ri

ty
 c

oe
ff

ic
ie

nt
; E

R
C

, e
nt

or
hi

na
l c

or
te

x;
 I

C
C

, i
nt

ra
cl

as
s 

co
rr

el
at

io
n 

co
ef

fi
ci

en
t; 

M
R

I,
 m

ag
ne

tic
 r

es
on

an
ce

 im
ag

in
g;

 N
C

, n
or

m
al

 c
on

tr
ol

; P
H

C
, p

ar
ah

ip
po

ca
m

pa
l c

or
te

x;
 T

1w
, T

1-
w

ei
gh

te
d;

 T
2w

, T
2-

w
ei

gh
te

d.

a D
SC

 a
nd

 v
ol

um
e 

of
 th

e 
co

m
po

un
d 

la
be

ls
 (

in
 it

al
ic

s)
 a

re
 m

ea
su

re
d 

us
in

g 
th

e 
m

er
ge

d 
la

be
l o

f 
co

rr
es

po
nd

in
g 

su
bl

ab
el

s 
(w

ho
le

 h
ip

po
ca

m
pu

s:
 a

nt
er

io
r 

an
d 

po
st

er
io

r 
hi

pp
oc

am
pu

s 
in

 T
1-

w
ei

gh
te

d 
M

R
I)

.

Hum Brain Mapp. Author manuscript; available in PMC 2019 August 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xie et al. Page 33

TABLE 4

Comparisons of different analysis methods in labeling the dura mater in the PMC atlas set

% of dura voxels in manual segmentation labeled as

Method Dura Gray matter Background and CSF

ASHS-T1 71.9 ± 6.4 6.5 ± 3.7 21.6 ± 5.9

FreeSurfer 6.0 N/A 62.4 ± 10.5 37.6 ± 10.5

Abbreviations: ASHS-T1, Automatic Segmentation of Hippocampal Subfields; CSF, cerebrospinal fluid; PMC, Penn Memory Center.
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